满分5 > 高中数学试题 >

已知函数f(x)=lnx-,g(x)=f(x)+ax-6lnx,其中a∈R. (...

已知函数f(x)=lnx-manfen5.com 满分网,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(Ⅲ)设函数h(x)=x2-mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.
(Ⅰ)f(x)的定义域为(0,+∞),且,当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;当a>0时,由f′(x)>0,得x>-a;由f′(x)<0,得x<-a.由此能够判断f(x)的单调性. (Ⅱ)由g(x)=ax-,定义域为(0,+∞),知-=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,由此能够求出正实数a的取值范围. (Ⅲ)当a=2时,g(x)=2x-,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0当x时,g′(x)<0.所以在(0,1)上,,由此能求出实数m的取值范围. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞),且, ①当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增; ②当a<0时,由f′(x)>0,得x>-a;由f′(x)<0,得x<-a; 故f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增. (Ⅱ)g(x)=ax-,g(x)的定义域为(0,+∞), -=, 因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0, ∴ax2-5x+a≥0, ∴a(x2+1)≥5x, 即, ∴. ∵,当且仅当x=1时取等号, 所以a. (Ⅲ)当a=2时,g(x)=2x-,, 由g′(x)=0,得x=或x=2. 当时,g′(x)≥0;当x时,g′(x)<0. 所以在(0,1)上,, 而“∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立”等价于 “g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值” 而h(x)在[1,2]上的最大值为max{h(1),h(2)}, 所以有, ∴, ∴, 解得m≥8-5ln2, 所以实数m的取值范围是[8-5ln2,+∞).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=sinx-cosx,x∈R.
(1)求函数f(x)在[0,2π]内的单调递增区间;
(2)若函数f(x)在x=x处取到最大值,求f(x)+f(2x)+f(3x)的值;
(3)若g(x)=ex(x∈r),求证:方程f(x)=g(x)在[0,+∞)内没有实数解.
(参考数据:ln2≈0.69,π≈3.14)
查看答案
一艘鱼艇停泊在距岸9km处,今需要派人送信给距离鱼艇manfen5.com 满分网km处的海岸渔站,如果送信人步行每小时4km,船速每小时2km,问应在何处登岸再步行可以使抵达渔站的时间最省?.
查看答案
已知函数f(x)=(sin2x+cos2x)2+3-2sin22x.
(1)求f(x)的最小正周期及对称中心;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移manfen5.com 满分网个单位长度得到的,当manfen5.com 满分网时,求y=g(x)的值域.
查看答案
设不等式|2x-3|≥7与x2-3mx+2m2-m-1<0(m>0)的解集分别为A,B,且满足条件A∩B=ϕ,求实数m的取值范围.
查看答案
在△ABC中,A=120°,b=1,面积为manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.