满分5 > 高中数学试题 >

已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3)...

已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值为正数,求a的取值范围.
(Ⅰ)f(x)为二次函数且二次项系数为a,把不等式f(x)>-2x变形为f(x)+2x>0因为它的解集为(1,3),则可设f(x)+2x=a(x-1)(x-3)且a<0,解出f(x);又因为方程f(x)+6a=0有两个相等的根,利用根的判别式解出a的值得出f(x)即可;(Ⅱ)因为f(x)为开口向下的抛物线,利用公式当x=时,最大值为=和a<0联立组成不等式组,求出解集即可. 【解析】 (Ⅰ)∵f(x)+2x>0的解集为(1,3).f(x)+2x=a(x-1)(x-3),且a<0.因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.① 由方程f(x)+6a=0得ax2-(2+4a)x+9a=0.② 因为方程②有两个相等的根,所以△=[-(2+4a)]2-4a•9a=0, 即5a2-4a-1=0.解得a=1或a=- 由于a<0,舍去a=1.将a=-代入①得f(x)的解析式 (Ⅱ)由 及a<0,可得f(x)的最大值为就 由解得a<-2-或-2+<a<0. 故当f(x)的最大值为正数时,实数a的取值范围是
复制答案
考点分析:
相关试题推荐
设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.
查看答案
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=manfen5.com 满分网,点E是PD的中点.
(I)证明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC为棱,EAC与DAC为面的二面角θ的正切值.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网
(1)求sinx-cosx的值;
(2)求manfen5.com 满分网的值.
查看答案
求函数manfen5.com 满分网的单调区间和值域.
查看答案
设集合A={x|x2-8x+15=0},B={x|ax-1=0},若B⊆A,求实数a的取值集合.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.