满分5 > 高中数学试题 >

已知椭圆 的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点. (...

已知椭圆 manfen5.com 满分网的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点,若过定点,请给出证明,并求出该定点,若不过定点,请说明理由.
(1)根据直线AM的斜率为1时,得出直线AM:y=x+2,代入椭圆方程并化简得:5x2+16x+12=0,解得点M的坐标即可;(2)对于是否过x轴上的一定点问题,可先假设存在,设直线AM的斜率为k,则AM:y=k(x+2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系即可求得P点的坐标,从而解决问题. 【解析】 (1)直线AM的斜率为1时,直线AM:y=x+2,(1分) 代入椭圆方程并化简得:5x2+16x+12=0,(2分) 解之得,∴.(4分) (2)设直线AM的斜率为k,则AM:y=k(x+2), 则化简得:(1+4k2)x2+16k2x+16k2-4=0.(6分) ∵此方程有一根为-2,∴,(7分) 同理可得.(8分) 由(1)知若存在定点,则此点必为.(9分) ∵,(11分) 同理可计算得.(13分) ∴直线MN过x轴上的一定点.(16分)
复制答案
考点分析:
相关试题推荐
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:manfen5.com 满分网,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案
设△ABC的三个内角A,B,C对边分别是a,b,c,已知manfen5.com 满分网
(1)求角B;
(2)若A是△ABC的最大内角,求manfen5.com 满分网的取值范围.
查看答案
在直三棱柱ABC-A1B1C1中,∠ABC=90°,E、F分别为A1C1、B1C1的中点,D为棱CC1上任一点.
(Ⅰ)求证:直线EF∥平面ABD;
(Ⅱ)求证:平面ABD⊥平面BCC1B1

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求f(x)的最大值及相应x的值.
查看答案
已知数列{an}满足a1=1,a2=2,an+2=manfen5.com 满分网,则该数列的前20项的和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.