由题意需要画出圆台的侧面展开图,并还原成圆锥展开的扇形,则所求的最短距离是平面图形两点连线,根据条件求出扇形的圆心角以及半径长,在求出最短的距离;取MB′的中点E,连接OE,交圆台上底展开图于F,则EF为所求.
【解析】
画出圆台的侧面展开图并还原成圆锥展开的扇形,且设扇形的圆心为O.
根据两点之间线段最短,可得所求的最短距离是MB',
设OA=R,圆心角是α,则
∵圆台上底半径为1,下底半径为4,母线AB=18
∴2π=αR ①,8π=α(18+R) ②,
由①②解得,α=,R=6,
∴OM=15,OB'=24,
∴由余弦定理可得MB′2=152+242-2×15×24×cos=441
∴MB′=21.
取MB′的中点E,连接OE,交圆台上底展开图于F,则EF为所求
∴cos∠OMB′==
∴OE=
∴EF=
故答案为:21,.