(I)根据an=Sn-Sn-1可得an=2an-1,然后求出首项,根据等比数列的定义可判定数列{an}是等比数列;
(II)先求出数列{an}的通项公式,从而得到数列{bn}的通项,然后根据通项的特征可知利用分组求和法进行求和即可.
(Ⅰ)证明:因为Sn=2an-3(n=1,2,…).,则Sn-1=2an-1-3(n=2,3,…).…(1分)
所以当n≥2时,an=Sn-Sn-1=2an-2an-1,…(3分)
整理得an=2an-1. …(4分)
由Sn=2an-3,令n=1,得S1=2a1-3,解得a1=3.…(5分)
所以{an}是首项为3,公比为2的等比数列. …(6分)
(Ⅱ)【解析】
因为,…(7分)
由bn=an+2n(n=1,2,…),得.
所以…(9分)
=…(11分)
=3•2n+n2+n-3
所以. …(12分)