满分5 > 高中数学试题 >

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)...

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.
(1)根据g(x)=f(x)-f'(x)是奇函数,且f'(x)=3x2+2bx+c能够求出b与c的值. (2)对g(x)进行求导,g'(x)>0时的x的取值区间为单调递增区间,g'(x)<0时的x的取值区间为单调递减区间.g'(x)=0时的x函数g(x)取到极值. 【解析】 (Ⅰ)∵f(x)=x3+bx2+cx,∴f'(x)=3x2+2bx+c. 从而g(x)=f(x)-f'(x)=x3+bx2+cx-(3x2+2bx+c)=x3+(b-3)x2+(c-2b)x-c 是一个奇函数,所以g(0)=0得c=0,由奇函数定义得b=3; (Ⅱ)由(Ⅰ)知g(x)=x3-6x,从而g'(x)=3x2-6, 当g'(x)>0时,x<-或x>, 当g'(x)<0时,-<x<, 由此可知,的单调递增区间;的单调递减区间; g(x)在x=时取得极大值,极大值为,g(x)在x=时取得极小值,极小值为.
复制答案
考点分析:
相关试题推荐
若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是    查看答案
manfen5.com 满分网如图为函数f(x)=ax3+bx2+cx+d的图象,f′(x)为函数f(x)的导函数,则不等式x•f′(x)<0的解集为    查看答案
若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是    查看答案
manfen5.com 满分网已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2xf′(2),则f′(5)=    查看答案
已知函数f(x)=x3+2x2-ax+1在区间(-1,1)上恰有一个极值点,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.