满分5 > 高中数学试题 >

已知f(x)=ax-1nx,x∈(0,e],g(x)=,其中e是自然常数,a∈R...

已知f(x)=ax-1nx,x∈(0,e],g(x)=manfen5.com 满分网,其中e是自然常数,a∈R.
(Ⅰ)当a=1时,研究f(x)的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+manfen5.com 满分网
(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
(Ⅰ)求导函数,确定函数的单调性,从而可得函数f(x)的极小值; (Ⅱ)f(x)在(0,e]上的最小值为1,令h(x)=g(x))+,求导函数,确定函数的单调性与最大值,即可证得结论; (Ⅲ)假设存在实数a,使f(x)的最小值是3,求导函数,分类讨论,确定函数的单调性,利用f(x)的最小值是3,即可求解. (Ⅰ)【解析】 f(x)=x-lnx,f′(x)= …(1分) ∴当0<x<1时,f′(x)<0,此时f(x)单调递减 当1<x<e时,f′(x)>0,此时f(x)单调递增   …(3分) ∴f(x)的极小值为f(1)=1                   …(4分) (Ⅱ)证明:∵f(x)的极小值为1,即f(x)在(0,e]上的最小值为1, ∴f(x)>0,f(x)min=1…(5分) 令h(x)=g(x))+=+,,…(6分) 当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增  …(7分) ∴h(x)max=h(e)=<=1=|f(x)|min     …(9分) ∴在(1)的条件下,f(x)>g(x)+;…(10分) (Ⅲ)【解析】 假设存在实数a,使f(x)的最小值是3,f′(x)= ①当a≤0时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,∴a=(舍去),所以,此时f(x)无最小值.…(12分) ②当0<<e时,f(x)在(0,)上单调递减,在(,e]上单调递增,f(x)min=f()=1+lna=3,∴a=e2,满足条件.…(14分) ③当时,x∈(0,e],所以f′(x)<0, 所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,∴a=(舍去), 所以,此时f(x)无最小值.…(15分) 综上,存在实数a=e2,使f(x)的最小值是3.…(16分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值        
(2)求f(x)的解析式
(3)若函数g(x)=(x+1)f(x)-a[f(x+1)-x]在区间(-1,2)上是减函数,求实数a的取值范围.
查看答案
manfen5.com 满分网,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(Ⅰ) 求a的值;
(Ⅱ) 求函数f(x)的极值.
查看答案
已知函数f(x)=(x2-ax)ex(x∈R),a为实数.
(Ⅰ)当a=0时,求函数f(x)的单调增区间;
(Ⅱ)若f(x)在闭区间[-1,1]上为减函数,求a的取值范围.
查看答案
设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.
查看答案
若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.