本题考查的知识点是类比推理,是要根据已知中给出的在计算“1×2+2×3+…+n(n+1)”时化简思路,对1×2×3+2×3×4+…+n(n+1)(n+2)的计算结果进行化简,处理的方法就是类比,将n(n+1)(n+2)进行合理的分解.
【解析】
∵n(n+1)(n+2)=
∴1×2×3=(1×2×3×4-0×1×2×3)
2×3×4=(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=
∴1×2×3+2×3×4+…+n(n+1)(n+2)=[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
故答案为: