(1)联立直线与抛物线方程,利用韦达定理,计算弦|AB|的长度,即可求p的值;
(2)证明x1x2+y1y2=0,即可得到OA⊥OB.
(1)【解析】
直线方程为y=-x+4,联立方程消去y得,x2-2(p+4)x+16=0.
设A(x1,y1),B(x2,y2),得x1+x2=2(p+4),x1x2=16,△=4(p+2)2-64>0.
所以|AB|=|x1-x2|==4,所以p=2.
(2)证明:由(1)知,x1+x2=2(p+4)=12,x1x2=16,
∴y1y2=(-x1+4)(-x2+4)=-8p=-16
∴x1x2+y1y2=0,∴OA⊥OB.