满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4...

manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.
(Ⅰ)求证AC⊥BC1
(Ⅱ)求证AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.
解法一:(1):利用勾股定理的逆定理判断出AC⊥BC,同时因为三棱柱为直三棱柱,从而证出. (2):因为D为AB的中点,连接C1B和CB1交点为E,连接DE,∵D是AB的中点,E是BC1的中点,根据三角形中位线定理得DE∥AC1,得到AC1∥平面CDB1;第三问:因为AC1∥DE,所以∠CED为AC1与B1C所成的角,求出此角即可. 解法二:利用空间向量法.如图建立坐标系, (1):证得向量点积为零即得垂直. (2):=λ,与两个向量或者共线或者平行可得.第三问: 证明:(Ⅰ)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5, ∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1; (Ⅱ)设CB1与C1B的交点为E,连接DE, ∵D是AB的中点,E是BC1的中点, ∴DE∥AC1, ∵DE⊂平面CDB1,AC1⊂平面CDB1, ∴AC1∥平面CDB1; (Ⅲ)∵DE∥AC1,∴∠CED为AC1与B1C所成的角, 在△CED中,ED=AC1=,CD=AB=,CE=CB1=2, ∴cos∠CED==, ∴异面直线AC1与B1C所成角的余弦值. 解法二: ∵直三棱锥ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,AC,BC,CC1两两垂直. 如图建立坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(Ⅰ)∵=(-3,0,0),=(0,4,4), ∴•=0, ∴⊥. (Ⅱ)设CB1与C1B的交点为E,则E(0,2,2) ∵=(-,0,2),=(-3,0,4), ∴=,∴∥ ∵DE⊂平面CDB1,AC1⊂平面CDB1,∴AC1∥平面CDB1. (Ⅲ)∵=(-3,0,0),=(0,4,4), ∴cos<,>==, ∴异面直线AC1与B1C所成角的余弦值为.
复制答案
考点分析:
相关试题推荐
设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
查看答案
已知函数f(x)=2sinx(sinx+cosx).
(1)求函数f(x)的最小正周期和最大值.
(2)求y=f(x)在R上的单调区间.
查看答案
(几何证明选做题)如图,∠PAQ是直角,半径为5的圆O与AP相切于点T,与AQ相交于两点B、C,BT是否平分∠OBA?证明你的结论;
证明:连接OT,
(1)∵AT是切线,
(2)∴OT⊥AP.
(3)又∵∠PAB是直角,即AQ⊥AP,
(4)∴AB∥OT,
(5)
(6)又∵OT=OB,
(7)∴∠OTB=∠OBT.
(8)∴∠OBT=∠TBA,即BT平分∠OBA.
以上证明的8个步骤中的(5)是   
manfen5.com 满分网 查看答案
在极坐标系中,圆ρ=2cosθ的圆心到直线ρcosθ=2的距离是    查看答案
如果点P在平面区域manfen5.com 满分网上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.