满分5 > 高中数学试题 >

已知函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减且满足f(0)=...

已知函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减且满足f(0)=1,f(1)=0.
(1)求a取值范围;
(2)设g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.
(1)由题意,函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减且满足f(0)=1,f(1)=0,可求出函数的导数,将函数在[0,1]上单调递减转化为导数在[0,1]上的函数值恒小于等于0,再结合f(0)=1,f(1)=0这两个方程即可求得a取值范围; (2)由题设条件,先给出g(x)=f(x)-f′(x)的解析式,求出导函数,g′(x)=(-2ax-a+1)ex,由于参数a的影响,函数在[0,1]上的单调性不同,结合(1)的结论及g′(x)可得. (i)当a=0时;(ii)当a=1时;(iii)当0<a<1时,分三类对函数的单调性进行讨论,确定并求出函数的最值 【解析】 (1)由f(0)=1,f(1)=0得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]ex, ∴f′(x)=[ax2+(a-1)x-a]ex, 由题意函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减可得对于任意的x∈(0,1),都有f′(x)<0 当a>0时,因为二次函数y=ax2+(a-1)x-a图象开口向上,而f′(0)=-a<0,所以只需要f′(1)=(a-1)e<0,即a<1,故有0<a<1; 当a=1时,对于任意的x∈(0,1),都有f′(x)=(x2-1)ex<0,函数符合条件; 当a=0时,对于任意的x∈(0,1),都有f′(x)=-xex<0,函数符合条件; 当a<0时,因f′(0)=-a>0函数不符合条件; 综上知,a的取值范围是0≤a≤1 (2)因为 g(x)=f(x)-f′(x)=(ax2-(a+1)x+1)ex-[ax2+(a-1)x-a]ex=(-2ax+a+1)ex,g′(x)=(-2ax-a+1)ex, (i)当a=0时,g′(x)=ex>0,g(x)在[0,1]上的最小值是g(0)=1,最大值是g(1)=e (ii)当a=1时,对于任意x∈(0,1)有g′(x)=-2xex<0,则有g(x)在[0,1]上的最小值是g(1)=0,最大值是g(0)=2; (iii)当0<a<1时,由g′(x)=0得x=>0, ①若,即0<a≤时,g(x)在[0,1]上是增函数,所以g(x)在[0,1]上最大值是g(1)=(1-a)e,最小值是g(0)=1+a; ②若,即<a<1时,g(x)在x=取得最大值g()=2a,在x=0或x=1时取到最小值, 而g(0)=1+a,g(1)=(1-a)e,则 当<a≤时,g(x)在x=0取到最小值g(0)=1+a, 当≤a<1时,g(x)在x=1取到最小值g(1)=(1-a)e
复制答案
考点分析:
相关试题推荐
某企业用49万元引进一条年产值25万元的生产线,为维持该生产线正常运转,第一年需各种费用6万元,从第二年开始包括维修费用在内,每年所需费用均比上一年增加2万元.
(1)该生产线第几年开始盈利(即总收入减去成本及所需费用之差为正值?)
(2)该生产线生产若干年后,处理方案有两种:①年平均盈利达到最大值时,以18万元的价格卖出;②盈利总额达到最大值时,以9万元的价格卖出,问那一种方案较为合理,请说明理由.
查看答案
先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x-1上的概率;
(2)求点P(x,y)满足y2<4x的概率.
查看答案
在正方体ABCD-A1B1C1D1,棱长AA1=2.
(1)E为棱CC1的中点,求证:B1D1⊥AE;   
(2)求二面角C-AE-B的平面角的正切值.

manfen5.com 满分网 查看答案
在△ABC中,已知manfen5.com 满分网
(1)求tan2A的值;   (2)若manfen5.com 满分网,求△ABC的面积.
查看答案
连接抛物线x2=4y的焦点F与点M(1,0)所得的线段与抛物线交于点A,设点O为坐标原点,则△OAM的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.