定义F(x,y)=(1+x)
y,x,y∈(0,+∞),
(I)令函数
,写出函数f(x)的定义域;
(II)令函数
的图象为曲线C,若存在实数b使得曲线C在x
(-4<x
<-1)处有斜率为-8的切线,求实数a的取值范围
(III)当x,y∈N*且x<y时,求证F(x,y)>F(y,x).
考点分析:
相关试题推荐
已知数列{a
n}的前n项和为
,且当n≥2时,S
nS
n-1-3S
n+2=0.
(Ⅰ)求a
2,a
3的值;
(Ⅱ)若
,求数列{b
n}的通项公式;
(Ⅲ)设数列
的前n项和为T
n,证明:
.
查看答案
如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°∠EAC=60°,AB=AC=AE=2.
(Ⅰ)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;
(Ⅱ)求平面EBD与平面ABC所成的锐二面角θ的余弦值;
(Ⅲ)求三棱锥C-BDE的体积.
查看答案
已知向量
=(cosωx,sinωx),
=(cosωx,2
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
|+
•
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S
△ABC=6
,求b的值.
查看答案
已知数列{a
n}是等差数列,其中每一项及公差d均不为零,设
=0(i=1,2,3,…)是关于x的一组方程:
(1)求所有这些方程的公共根;
(2)设这些方程的另一个根为m
i,求证
,
,
,…,
,…也成等差数列.
查看答案
已知函数
的周期为2π,其中ω>0.
(I)求ω的值及函数f(x)的单调递增区间;
(II)在△ABC中,设内角A、B、C所对边的长分别为a、b,c若a=
,c=2,f(A)=
,求b的值.
查看答案