满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯...

manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=manfen5.com 满分网
(1)求证:平面PAC⊥平面PCD;
(2)在棱PD上是否存在一点E,使CE∥平面PAB?若存在,请确定E点的位置;若不存在,请说明理由.
(1)设PA=1,由勾股定理逆定理得AC⊥CD,根据线面垂直的性质可知PA⊥CD,又PA∩AC=A,根据线面垂直的判定定理可知CD⊥面PAC,而 CD⊂面PCD,根据面面垂直的判定定理可知面PAD⊥面PCD; (2)作CF∥AB交于AD于F,作EF∥AP交于PD于E,连接CE,根据面面平行的性质定理可知平面EFC∥平面PAB,又CE⊂平面EFC,根据面面平行的性质可知CE∥平面PAB,根据线面关系可知E为PD中点,使CE∥面PAB. 【解析】 (1)设PA=1. 由题意PA=BC=1,AD=2.(2分) ∵AB=1,,由∠ABC=∠BAD=90°.易得CD=AC=. 由勾股定理逆定理得AC⊥CD.(3分) 又∵PA⊥面ABCD,CD⊂面ABCD, ∴PA⊥CD.又PA∩AC=A,∴CD⊥面PAC.(5分) 又CD⊂面PCD,∴面PAC⊥面PCD.(6分) (2)作CF∥AB交于AD于F,作EF∥AP交于PD于E,连接CE.(8分) ∵CF∥AB,EF∥PA,CF∩EF=F,PA∩AB=A, ∴平面EFC∥平面PAB.(10分) 又CE⊂平面EFC,∴CE∥平面PAB. ∵BC=,AF=BC, ∴F为AD的中点,∴E为PD中点. 故棱PD上存在点E,且E为PD中点,使CE∥面PAB.(12分)
复制答案
考点分析:
相关试题推荐
如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若manfen5.com 满分网,求三棱锥P-ABC的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线BD⊥平面PEG.
查看答案
manfen5.com 满分网已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.
查看答案
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图1所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图2所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是   
manfen5.com 满分网 查看答案
如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是    (填出所有可能的序号).manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.