登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值. (Ⅰ...
设函数f(x)=2x
3
+3ax
2
+3bx+8c在x=1及x=2时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c
2
成立,求c的取值范围.
(1)依题意有,f'(1)=0,f'(2)=0.求解即可. (2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围. 【解析】 (Ⅰ)f'(x)=6x2+6ax+3b, 因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0. 即 解得a=-3,b=4. (Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2). 当x∈(0,1)时,f'(x)>0; 当x∈(1,2)时,f'(x)<0; 当x∈(2,3)时,f'(x)>0. 所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c. 则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c. 因为对于任意的x∈[0,3],有f(x)<c2恒成立, 所以9+8c<c2, 解得c<-1或c>9, 因此c的取值范围为(-∞,-1)∪(9,+∞).
复制答案
考点分析:
相关试题推荐
(1)证明:AB⊥A
1
C
(2)求二面角A
1
-BC-A的余弦值.
查看答案
调查某初中1000名学生的肥胖情况,得下表:
偏瘦
正常
肥胖
女生(人)
100
173
y
男生(人)
x
177
z
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.
(Ⅰ)求x的值;
(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(Ⅲ)已知y≥193,z≥193,肥胖学生中男生不少于女生的概率.
查看答案
在数列{a
n
}中,a
1
=1,当n≥2时,其前n项和S
n
满足
.
(1)求a
n
;
(2)令
,求数列{b
n
}的前项和T
n
.
查看答案
在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B-C)=4sinB•sinC-1.
(1)求A;
(2)若a=3,sin
=
,求b.
查看答案
函数
的图象为C,如下结论中正确的是
.(写出所有正确结论的编号)
①图象C关于直线
对称;
②图象C关于点
对称;
③函数f(x)在区间
内是增函数;
④由y=3sin2x的图角向右平移
个单位长度可以得到图象C.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.