由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.
【解析】
由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,如图所示.
(1)几何体的体积为
V=•S矩形•h=×6×8×4=64.
(2)正侧面及相对侧面底边上的高为:
h1==5.
左、右侧面的底边上的高为:
h2==4.
故几何体的侧面面积为:
S=2×(×8×5+×6×4)
=40+24.