满分5 > 高中数学试题 >

已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖...

已知平面区域manfen5.com 满分网恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖.
(1)试求圆C的方程.
(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.
(1)根据题意可知平面区域表示的是三角形及其内部,且△OPQ是直角三角形,进而可推断出覆盖它的且面积最小的圆是其外接圆,进而求得圆心和半径,则圆的方程可得. (2)设直线l的方程是:y=x+b.根据CA⊥CB,可知圆心C到直线l的距离,进而求得b,则直线方程可得. 【解析】 (1)由题意知此平面区域表示的是以 O(0,0),P(4,0),Q(0,2)构成的三角形及其内部, 且△OPQ是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是, 所以圆C的方程是(x-2)2+(y-1)2=5. (2)设直线l的方程是:y=x+b. 因为,所以圆心C到直线l的距离是, 即= 解得:b=-1. 所以直线l的方程是:y=x-1.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,记二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.经过三个交点的圆记为C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)问圆C是否经过定点(其坐标与b的无关)?请证明你的结论.
查看答案
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求k值;如果不存在,请说明理由.
查看答案
已知圆C1的圆心在坐标原点O,且恰好与直线l1manfen5.com 满分网相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x,y)为圆上任意一点,AN⊥x轴于N,若动点Q满足manfen5.com 满分网,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当manfen5.com 满分网时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.
查看答案
设方程x2+y2-2(m+3)x-2(1-4m2)y+16m4+9=0.若该方程表示一个圆,求m的取值范围.
查看答案
过原点的直线与圆x2+y2-2x-4y+4=0相交所得的弦长为2,则该直线的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.