满分5 > 高中数学试题 >

在平面直角坐标系xOy中,记二次函数f(x)=x2+2x+b(x∈R)与两坐标轴...

在平面直角坐标系xOy中,记二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.经过三个交点的圆记为C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)问圆C是否经过定点(其坐标与b的无关)?请证明你的结论.
(1)由题意知,由抛物线与坐标轴有三个交点可知抛物线不过原点即b不等于0,然后抛物线与x轴有两个交点即令f(x)=0的根的判别式大于0即可求出b的范围; (2)设出圆的一般式方程,根据抛物线与坐标轴的交点坐标可知:令y=0得到与f(x)=0一样的方程;令x=0得到方程有一个根是b即可求出圆的方程; (3)设圆的方程过定点(x,y),将其代入圆的方程得x2+y2+2x-y+b(1-y)=0,因为x,y不依赖于b得取值,所以得到1-y=0即y=1,代入x2+y2+2x-y=0中即可求出定点的坐标. 【解析】 .(1)令x=0,得抛物线与y轴交点是(0,b); 令f(x)=x2+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0. (2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0 令y=0得x2+Dx+F=0这与x2+2x+b=0是同一个方程,故D=2,F=b. 令x=0得y2+Ey+F=0,方程有一个根为b,代入得出E=-b-1. 所以圆C的方程为x2+y2+2x-(b+1)y+b=0. (3)圆C必过定点,证明如下: 假设圆C过定点(x,y)(x,y不依赖于b),将该点的坐标代入圆C的方程, 并变形为x2+y2+2x-y+b(1-y)=0(*) 为使(*)式对所有满足b<1(b≠0)的b都成立,必须有1-y=0,结合(*)式得x2+y2+2x-y=0,解得 经检验知,(-2,1)均在圆C上,因此圆C过定点.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求k值;如果不存在,请说明理由.
查看答案
已知圆C1的圆心在坐标原点O,且恰好与直线l1manfen5.com 满分网相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x,y)为圆上任意一点,AN⊥x轴于N,若动点Q满足manfen5.com 满分网,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当manfen5.com 满分网时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.
查看答案
设方程x2+y2-2(m+3)x-2(1-4m2)y+16m4+9=0.若该方程表示一个圆,求m的取值范围.
查看答案
过原点的直线与圆x2+y2-2x-4y+4=0相交所得的弦长为2,则该直线的方程为    查看答案
若a,b,c是直角三角形△ABC的三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.