甲、乙两人各射击一次,击中目标的概率分别是
和
假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击3次,至少1次未击中目标的概率;
(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?
(3)设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望Eξ.(结果可以用分数表示)
考点分析:
相关试题推荐
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月 份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量x千件 | 2 | 3 | 4 | 3 | 4 | 5 |
甲单位成本y元/件 | 73 | 72 | 71 | 73 | 69 | 68 |
乙单位成本y元/件 | 78 | 74 | 70 | 72 | 66 | 60 |
(1)试比较甲乙哪个单位的成本比较稳定.
(2)求甲单位成本y与月产量x之间的线性回归方程.(其中已计算得:x
1y
1+x
2y
2+…x
6y
6=1481,结果保留两位小数)
(3)当月产量为12千件时,单位成本是多少?
查看答案
为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组.每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的实验结果.(疱疹面积单位:mm
2)
表1:注射药物A后皮肤疱疹面积的频数分布表
疱疹面积 | [60,65) | [65,70) | [70,75) | [75,80) |
频数 | 30 | 40 | 20 | 10 |
表2:注射药物B后皮肤疱疹面积的频数分布表
疱疹面积 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) |
频数 | 10 | 25 | 20 | 30 | 15 |
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.
表3:
| 疱疹面积小于70mm2 | 疱疹面积不小于70mm2 | 合计 |
注射药物A | a=______ | b=______ | ______ |
注射药物B | c=______ | d=______ | ______ |
合计 | ______ | ______ | n=______ |
附:
.
查看答案
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案
某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(Ⅲ)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.
查看答案
如果在一次试验中,某事件A发生的概率为p,那么在n次独立重复试验中,事件A发生偶数次的概率为
.
查看答案