满分5 > 高中数学试题 >

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD...

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.AD=1,manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC、上,manfen5.com 满分网,若DE∥面PAB,求λ的值.

manfen5.com 满分网
(1)根据余弦定理求出DC的长,而BC2=DB2+DC2,根据勾股定理可得BD⊥DC,而PD⊥面ABCD,则BD⊥PD,PD∩CD=D,根据线面垂直判定定理可知BD⊥面PDC,而PC在面PDC内,根据线面垂直的性质可知BD⊥PC; (2)在底面ABCD内过D作直线DF∥AB,交BC于F,分别以DA、DF、DP为x、y、z轴建立空间坐标系,根据(1)知BD⊥面PDC,则就是面PDC的法向量,设AB与面PDC所成角大小为θ,利用向量的夹角公式求出θ即可. (3)先求出向量,,,,,设=(x,y,z)为面PAB的法向量,根据•=0,•=0,求出,再根据DE∥面PAB,则•=0求出λ即可. 【解析】 (1)∵∠DAB=90°,AD=1,AB=,∴BD=2,∠ABD=30°, ∵BC∥AD∴∠DBC=60°,BC=4,由余弦定理得DC=2,(3分) BC2=DB2+DC2,∴BD⊥DC, ∵PD⊥面ABCD,∴BD⊥PD,PD∩CD=D,∴BD⊥面PDC, ∵PC在面PDC内,∴BD⊥PC(5分) (2)在底面ABCD内过D作直线DF∥AB,交BC于F, 分别以DA、DF、DP为x、y、z轴建立如图空间坐标系,(6分) 由(1)知BD⊥面PDC,∴就是面PDC的法向量,(7分) A(1,0,0),B(1,,0),P(0,0,a)=(0,,0),=(1,,0),(8分) 设AB与面PDC所成角大小为θ,cosθ==,(9分) ∵θ∈(0,)∴θ=(10分) (3)在(2)中的空间坐标系中A、(1,0,0),B、(1,,0),P(0,0,a)C、(-3,,0),(11分) =(-3,,-a),=(-3λ,λ,-aλ), =+=(0,0,a)+(-3λ,λ,-aλ)=(-3λ,λ,a-aλ)(12分) =(0,,0),=(1,0,-a), 设=(x,y,z)为面PAB的法向量, 由•=0, 得y=0,由•=0,得x-az=0,取x=a,z=1,=(a,0,1),(14分) 由D、E∥面PAB得:⊥,∴•=0,-3aλ+a-aλ=0,∴λ=(15分)
复制答案
考点分析:
相关试题推荐
符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);
③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数ξ的分布列及数学期望;
(II)求这名同学被该大学录取的概率.
查看答案
对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.
(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;
(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.
查看答案
manfen5.com 满分网用一个边长为manfen5.com 满分网的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为1的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为    查看答案
在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到点A(1,3),B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10,0≤y≤10,则所有满足条件点C的轨迹的长度之和为     查看答案
已知函数f(x)满足:manfen5.com 满分网,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.