满分5 > 高中数学试题 >

设函数f(x)=lnx-ax2-bx. (Ⅰ)当a=b=时,求f(x)的最大值;...

设函数f(x)=lnx-manfen5.com 满分网ax2-bx.
(Ⅰ)当a=b=manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+manfen5.com 满分网ax2+bx+manfen5.com 满分网(0<x≤3),以其图象上任意一点P(x,y)为切点的切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I )先求定义域,再研究单调性,从而求最值. (II)先构造函数F(x)再由以其图象上任意一点P(x,y)为切点的切线的斜率k≤恒成立,知导函数≤恒成立,再转化为所以求解. (III)先把程2mf(x)=x2有唯一实数解,转化为所以x2-2mlnx-2mx=0有唯一实数解,再利用单调函数求解. 【解析】 (Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分) 当时,, .(2分) 令f′(x)=0,解得x=1. 当0<x<1时,f′(x)>,此时f(x)单调递增; 当x>1时,f′(x)<0,此时f(x)单调递减.(3分) 所以f(x)的极大值为,此即为最大值.(4分) (Ⅱ), 所以,在x∈(0,3]上恒成立,(6分) 所以,x∈(0,3](7分) 当x=1时,取得最大值.所以a≥.(9分) (Ⅲ)因为方程2mf(x)=x2有唯一实数解, 所以x2-2mlnx-2mx=0有唯一实数解. 设g(x)=x2-2mlnx-2mx,则. 令g′(x)=0,得x2-mx-m=0. 因为m>0,x>0, 所以(舍去),,(10分) 当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)单调递减, 当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增. 当x=x2时,g′(x2)=0g(x),g(x2)取最小值g(x2).(11分) 因为g(x)=0有唯一解,所以g(x2)=0. 则,即 所以2mlnx2+mx2-m=0, 因为m>0,所以2lnx2+x2-1=0.(12分) 设函数h(x)=2lnx+x-1, 因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.(13分) 因为h(I)=0,所以方程的解为(X2)=1,即, 解得(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网=1的两个焦点的坐标分别为F1(-1,0)、F2(1,0),点P在椭圆上,manfen5.com 满分网=0且△PF1F2的周长为6.
(Ⅰ)求椭圆C的方程和△PF1F2的外接圆D的方程;
(Ⅱ)A为椭圆C的左顶点,过点F2的直线l与椭圆C交于M、N两点,且M、N均不在x轴上,设直线AM、AN的斜率分别为k1、k2,求k1•k2的值.

manfen5.com 满分网 查看答案
某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工.
(Ⅰ)求每个报名者能被聘用的概率;
(Ⅱ)随机调查了24名笔试者的成绩如下表所示:
分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)
人数126951
请你预测面试的切线分数大约是多少?
(Ⅲ)公司从聘用的四男a、b、c、d和二女e、f中选派两人参加某项培训,则选派结果为一男一女的概率是多少?
查看答案
等差数列{an}中,a5=9,a3+a9=22.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若在数列{an}的每相邻两项an和an+1之间各插入一个数2n,使之成为新的数列{bn},Sn为数列{bn}的前n项的和,求S20的值.
查看答案
如图,平面ABCD⊥平面ABE,其中四边形ABCD是正方形,△ABE是等边三角形,且AB=2,点F、G分别是BC、AE的中点.
(Ⅰ)求三棱锥F-ABE的体积;
(Ⅱ)求证:BG∥平面EFD;
(Ⅲ)若点P在线段DE上运动,求证:BG⊥AP.

manfen5.com 满分网 查看答案
在△ABC中,cosB=manfen5.com 满分网,sin(manfen5.com 满分网-C)=manfen5.com 满分网
(Ⅰ)求sinA的值;
(Ⅱ)若AB=2manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.