以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点P的极坐标为(
,
),直线l过点P,且倾斜角为
,方程
=1所对应的曲线经过伸缩变换
后的图形为曲线C.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标系方程.
(Ⅱ)直线l与曲线C相交于两点A,B,求|PA|•|PB|的值.
考点分析:
相关试题推荐
如图所示四边形ABCD内接于E、O,AC交BD于点E,圆的切线DF交BC的延长线于F,CD平分∠BDF
(Ⅰ)求证:AB•AD=AC•AE
(Ⅱ)若圆的半径为2,弦BD长为2
,求切线DF的长.
查看答案
已知函数f(x)=e
x+(a-2)x在定义域内不是单调函数.
(Ⅰ)求函数f(x)的极值
(Ⅱ)对于任意的a∈(2-e,2)及x≥0,求证e
x≥1+(1-
)x
2.
查看答案
在平面直角坐标系xOy中,点P(0,-1),点A在x轴上,点B在y轴非负半轴上,点M满足:
=2
,
=0
(Ⅰ)当点A在x轴上移动时,求动点M的轨迹C的方程;
(Ⅱ)设Q为曲线C上一点,直线l过点Q且与曲线C在点Q处的切线垂直,l与C的另一个交点为R,若以线段QR为直径的圆经巡原点,求直线l的方程.
查看答案
某次体育比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲,乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率
如下表:
若甲队横扫对手获胜(即3:0获胜)的概率是
,比赛至少打满4场的概率为
(Ⅰ)求p,q的值
(Ⅱ)甲队以什么样的比分获得决赛胜利的可能性最大?
查看答案
在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=∠CBA=90°,面 PAB⊥面ABCD,PA=PB=AB=AD=2,BC=1,点M是棱PD的中点
(Ⅰ)求证:CM∥平面PAB;
(Ⅱ)求四棱锥P-ABCD的体积.
查看答案