满分5 > 高中数学试题 >

已知函数. (1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围; ...

已知函数manfen5.com 满分网
(1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(2)设m,n∈R,且m≠n,求证manfen5.com 满分网
(1)根据f(x)的解析式求出f(x)的导函数,通分后根据函数f(x)在(0,+∞)上为单调增函数,得到分子大于0恒成立,解出2a-2小于等于一个函数关系式,利用基本不等式求出这个函数的最小值,列出关于a的不等式,求出不等式的解集即可得到a的取值范围; (2)把所证的式子利用对数的运算法则及不等式的基本性质变形,即要证ln->0,根据(1)得到h(x)在x大于等于1时单调递增,且大于1,利用函数的单调性可得证. 【解析】 (1)f′(x)=-==, 因为f(x)在(0,+∞)上为单调增函数,所以f′(x)≥0在(0,+∞)上恒成立 即x2+(2-2a)x+1≥0在(0,+∞)上恒成立, 当x∈(0,+∞)时,由x2+(2-2a)x+1≥0, 得:2a-2≤x+, 设g(x)=x+,x∈(0,+∞), 则g(x)=x+≥2=2,当且仅当x=即x=1时,g(x)有最小值2, 所以2a-2≤2,解得a≤2,所以a的取值范围是(-∞,2]; (2)要证,只需证<, 即ln>,即ln->0, 设h(x)=lnx-, 由(1)知h(x)在(1,+∞)上是单调增函数,又>1, 所以h()>h(1)=0,即ln->0成立, 得到.
复制答案
考点分析:
相关试题推荐
如图,多面体ABCD-EFG中,底面ABCD为正方形,GD∥FC∥AE,AE⊥平面ABCD,其正视图、俯视图如下:
(I)求证:平面AEF⊥平面BDG;
(II)若存在λ>0使得manfen5.com 满分网=manfen5.com 满分网,二面角A-BG-K的大小为60°,求λ的值.

manfen5.com 满分网 查看答案
一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数xi10152025303540
件数yi471215202327
其中i=1,2,3,4,5,6,7.
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求回归直线方程.(结果保留到小数点后两位);
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)
参考公式:回归直线的方程manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
已知数列{an}满足manfen5.com 满分网,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=(2n-1)an,求数列{bn}的前n项和Sn
查看答案
已知定义在R上的函数f(x),g(x)满足manfen5.com 满分网,且f′(x)g(x)<f(x)g′(x),manfen5.com 满分网,若有穷数列manfen5.com 满分网的前n项和等于manfen5.com 满分网,则n=    查看答案
已知三棱锥D-ABC的顶点都在球O的球面上,AB=4,BC=3,AB⊥BC,AD=12,且DA⊥平面ABC,则三棱锥A-BOD的体积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.