满分5 > 高中数学试题 >

设集合M={x|y=2x+1},集合N={y|y=-x2},则( ) A.M⊆N...

设集合M={x|y=2x+1},集合N={y|y=-x2},则( )
A.M⊆N
B.N⊆M
C.N=M
D.M∩N={(-1,1)}
先分别化简集合M,N,再考虑集合之间的关系即可. 【解析】 由题意,∵M是函数y=2x+1的定义域,∴M=R, ∵N是函数y=-x2的值域,∴N=(-∞,0] ∴N⊆M 故选B.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)<|a-1|的解集非空,求实数a的取值范围.
查看答案
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为manfen5.com 满分网,曲线C的参数方程为manfen5.com 满分网(α为参数).
(I)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
查看答案
如图,在正△ABC中,点D,E分别在边AC,AB上,且AD=manfen5.com 满分网AC,AE=manfen5.com 满分网AB,BD,CE相交于点F.
(I)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.

manfen5.com 满分网 查看答案
设抛物线C的方程为x2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(Ⅰ)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(Ⅱ)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.
查看答案
已知函数f(x)=xlnx.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)证明:对一切x∈(0,+∞),都有manfen5.com 满分网成立.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.