满分5 > 高中数学试题 >

已知函数f(x)=(x-k)ex. (Ⅰ)求f(x)的单调区间; (Ⅱ)求f(x...

已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k-1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值. 【解析】 (Ⅰ)f′(x)=(x-k+1)ex, 令f′(x)=0,得x=k-1, f′(x)f(x)随x的变化情况如下: ∴f(x)的单调递减区间是(-∞,k-1),f(x)的单调递增区间(k-1,+∞); (Ⅱ)当k-1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增, ∴f(x)在区间[0,1]上的最小值为f(0)=-k; 当0<k-1<1,即1<k<2时,由(I)知,f(x)在区间[0,k-1]上单调递减,f(x)在区间(k-1,1]上单调递增, ∴f(x)在区间[0,1]上的最小值为f(k-1)=-ek-1; 当k-1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减, ∴f(x)在区间[0,1]上的最小值为f(1)=(1-k)e; 综上所述f(x)min=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,其中a为正实数
(Ⅰ)当a=manfen5.com 满分网时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.
查看答案
已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.
(1)若函数f(x)得值不大于1,求x得取值范围;
(2)若不等式f(x)-g(x)≥m+1的解集为R,求的取值范围.
查看答案
已知直线C1manfen5.com 满分网(t为参数),C2manfen5.com 满分网(θ为参数),
(Ⅰ)当α=manfen5.com 满分网时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
查看答案
如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S=manfen5.com 满分网AD•AE,求∠BAC的大小.

manfen5.com 满分网 查看答案
已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,
(1)求实数a的值;
(2)求f(x)在[-2,2]上的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.