满分5 > 高中数学试题 >

已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(...

已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[manfen5.com 满分网,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
(I)把x=e代入函数f(x)=-ax+b+axlnx,,解方程即可求得实数b的值; (II)求导,并判断导数的符号,确定函数的单调区间; (III)假设存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点,转化为利用导数求函数y=f(x)在区间[,e]上的值域. 【解析】 (I)由f(e)=2,代入f(x)=-ax+b+axlnx, 得b=2; (II)由(I)可得f(x)=-ax+2+axlnx,函数f(x)的定义域为(0,+∞), 从而f′(x)=alnx, ∵a≠0,故 ①当a>0时,由f′(x)>0得x>1,由f′(x)<0得0<x<1; ②当a<0时,由f′(x)>0得0<x<1,由f′(x)<0得x>1; 综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1); 当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞); (III)当a=1时,f(x)=-x+2+xlnx,f′(x)=lnx, 由(II)可得,当x∈(,e),f(x),f′(x)变化情况如下表: 又f()=2-<2, 所以y=f(x)在[,e]上的值域为[1,2], 据此可得,若,则对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点; 并且对每一个t∈(-∞,m)∪(M,+∞),直线y=t与曲线y=f(x)(x∈[,e])都没有公共点; 综上当a=1时,存在最小实数m=1和最大的实数=2M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点.
复制答案
考点分析:
相关试题推荐
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式manfen5.com 满分网,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R)
(Ⅰ)证明:曲线y=f(x)在x=0的切线过点(2,2);
(Ⅱ)若f(x)在x=x处取得极小值,x∈(1,3),求a的取值范围.
查看答案
已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
查看答案
manfen5.com 满分网,其中a为正实数
(Ⅰ)当a=manfen5.com 满分网时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.
查看答案
已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.
(1)若函数f(x)得值不大于1,求x得取值范围;
(2)若不等式f(x)-g(x)≥m+1的解集为R,求的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.