满分5 > 高中数学试题 >

设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,...

设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(I) 求a、b的值,并写出切线l的方程;
(II)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
(I) 利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可. (II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2-3x+2-m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x-1)恒成立问题转化为求函数f(x)+g(x)-mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围. 【解析】 (I) f'(x)=3x2+4ax+b,g'(x)=2x-3. 由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l. 故有f(2)=g(2)=0,f'(2)=g'(2)=1. 由此得,解得, 所以a=-2,b=5..切线的方程为x-y-2=0. (II)由(I)得f(x)=x3-4x2+5x-2,所以f(x)+g(x)=x3-3x2+2x. 依题意,方程x(x2-3x+2-m)=0,有三个互不相等的实根0,x1,x2, 故x1,x2是x2-3x+2-m=0的两相异实根. 所以△=9-4(2-m)>0,解得m>-. 又对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立, 特别地取x=x1时,f(x1)+g(x1)<m(x1-1)成立,得m<0. 由韦达定理得x1+x2=3>0,x1x2=2-m>0.故0<x1<x2. 对任意的x∈[x1,x2],x-x2≤0,x-x1≥0,x>0. 则f(x)+g(x)-mx=x(x-x1)(x-x2)≤0,又f(x1)+g(x1)-mx1=0. 所以f(x)+g(x)-mx在x∈[x1,x2]上的最大值为0. 于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立, 综上得:实数m的取值范围是(-,0).
复制答案
考点分析:
相关试题推荐
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[manfen5.com 满分网,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
查看答案
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式manfen5.com 满分网,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R)
(Ⅰ)证明:曲线y=f(x)在x=0的切线过点(2,2);
(Ⅱ)若f(x)在x=x处取得极小值,x∈(1,3),求a的取值范围.
查看答案
已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
查看答案
manfen5.com 满分网,其中a为正实数
(Ⅰ)当a=manfen5.com 满分网时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.