满分5 > 高中数学试题 >

设 (1)若f(x)在上存在单调递增区间,求a的取值范围. (2)当0<a<2时...

manfen5.com 满分网
(1)若f(x)在manfen5.com 满分网上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]的最小值为manfen5.com 满分网,求f(x)在该区间上的最大值.
(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0. (2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值. 【解析】 (1)f′(x)=-x2+x+2a f(x)在存在单调递增区间 ∴f′(x)>0在有解 ∵f′(x)=-x2+x+2a对称轴为 ∴递减 ∴ 解得. (2)当0<a<2时,△>0; f′(x)=0得到两个根为;(舍) ∵ ∴时,f′(x)>0;时,f′(x)<0 当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1) 当x=4时最小∴=解得a=1 所以当x=时最大为
复制答案
考点分析:
相关试题推荐
设函数f(x)=x-manfen5.com 满分网-alnx(a∈R).
(Ⅰ)讨论函数f(x)的单调性.
(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,请说明理由.
查看答案
设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(I) 求a、b的值,并写出切线l的方程;
(II)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
查看答案
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[manfen5.com 满分网,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
查看答案
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式manfen5.com 满分网,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R)
(Ⅰ)证明:曲线y=f(x)在x=0的切线过点(2,2);
(Ⅱ)若f(x)在x=x处取得极小值,x∈(1,3),求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.