满分5 > 高中数学试题 >

已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R. (Ⅰ...

已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
(I)当t=1时,求出函数f(x),利用导数的几何意义求出x=0处的切线的斜率,利用点斜式求出切线方程; (II)根据f'(0)=0,解得x=-t或x=,讨论t的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0求出单调区间即可; (III)根据函数的单调性分两种情况讨论,当≥1与当0<<1时,研究函数的单调性,然后根据区间端点的符号进行判定对任意t∈(0,2),f(x)在区间(0,1)内均存在零点从而得到结论. 【解析】 (I)当t=1时,f(x)=4x3+3x2-6x,f(0)=0 f'(x)=12x2+6x-6,f'(0)=-6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=-6x. (II)【解析】 f'(x)=12x2+6tx-6t2,f'(0)=0,解得x=-t或x= ∵t≠0,以下分两种情况讨论: (1)若t<0,则<-t,∴f(x)的单调增区间是(-∞,),(-t,+∞);f(x)的单调减区间是(,-t) (2)若t>0,则>-t,∴f(x)的单调增区间是(-∞,-t),(,+∞);f(x)的单调减区间是(-t,) (III)证明:由(II)可知,当t>0时,f(x)在(0,)内单调递减,在(,+∞)内单调递增,以下分两种情况讨论: (1)当≥1,即t≥2时,f(x)在(0,1)内单调递减. f(0)=t-1>0,f(1)=-6t2+4t+3≤-13<0 所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点. (2)当0<<1,即0<t<2时,f(x)在(0,)内单调递减,在(,1)内单调递增 若t∈(0,1],f()=+t-1≤<0, f(1)=)=-6t2+4t+3≥-2t+3>0 所以f(x)在(,1)内存在零点. 若t∈(1,2),f()=+t-1<+1<0, f(0)=t-1>0∴f(x)在(0,)内存在零点. 所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点. 综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
复制答案
考点分析:
相关试题推荐
设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与manfen5.com 满分网的大小关系;
(Ⅲ)求a的取值范围,使得g(a)-g(x)<manfen5.com 满分网对任意x>0成立.
查看答案
设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
查看答案
已知函数f(x)=lnx-ax2+(2-a)x.
(I)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x<manfen5.com 满分网时,f(manfen5.com 满分网+x)>f(manfen5.com 满分网-x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x,证明:f′(x)<0.
查看答案
已知函数f(x)=manfen5.com 满分网+manfen5.com 满分网,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>manfen5.com 满分网+manfen5.com 满分网,求k的取值范围.
查看答案
设f(x)=manfen5.com 满分网x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.