满分5 > 高中数学试题 >

如图一,平面四边形ABCD关于直线AC对称,∠A=60°,∠C=90°,CD=2...

如图一,平面四边形ABCD关于直线AC对称,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如图二),使二面角A-BD-C的余弦值等于manfen5.com 满分网.对于图二,完成以下各小题:
(Ⅰ)求A,C两点间的距离;
(Ⅱ)证明:AC⊥平面BCD;
(Ⅲ)求直线AC与平面ABD所成角的正弦值.

manfen5.com 满分网
(I)取BD的中点E,先证得∠AEC就是二面角A-BD-C的平面角,再在△ACE中利用余弦定理即可求得A,C两点间的距离; (II)欲证线面垂直:AC⊥平面BCD,转化为证明线线垂直:AC⊥BC,AC⊥CD,即可; (III)欲求直线AC与平面ABD所成角,先结合(I)中的垂直关系作出直线AC与平面ABD所成角,最后利用直角三角形中的边角关系即可求出所成角的正弦值. 【解析】 (Ⅰ)取BD的中点E,连接AE,CE, 由AB=AD,CB=CD,得:AE⊥BD,CE⊥BD ∴∠AEC就是二面角A-BD-C的平面角, ∴(2分) 在△ACE中, AC2=AE2+CE2-2AE•CE•cos∠AEC = ∴AC=2(4分) (Ⅱ)由,AC=BC=CD=2 ∴AC2+BC2=AB2,AC2+CD2=AD2, ∴∠ACB=∠ACD=90°(6分) ∴AC⊥BC,AC⊥CD, 又BC∩CD=C∴AC⊥平面BCD.(8分) (Ⅲ)由(Ⅰ)知BD⊥平面ACEBD⊂平面ABD ∴平面ACE⊥平面ABD(10分) 平面ACE∩平面ABD=AE, 作CF⊥AE交AE于F,则CF⊥平面ABD,∠CAF就是AC与平面ABD所成的角,(12分) ∴.(14分)
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(1+cosωx,1),manfen5.com 满分网=(1,a+manfen5.com 满分网sinωx)(ω为常数且ω>0),函数f(x)=manfen5.com 满分网在R上的最大值为2.
(1)求实数a的值;
(2)把函数y=f(x)的图象向右平移manfen5.com 满分网个单位,可得函数y=g(x)的图象,若y=g(x)在[0,manfen5.com 满分网]上为增函数,求ω的最大值.
查看答案
集合A,B各有四个元素,A∩B有一个元素,C⊈A∪B,集合C含有三个元素,且其中至少有一个A的元素,符合上述条件的集合C的个数是    查看答案
已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命题
①若f1(x)=manfen5.com 满分网则f1(x)∈M;
②若f2(x)=2x,则f2(x)∈M;
③若f3(x)∈M,则y=f3(x)的图象关于原点对称;
④若f4(x)∈M则对于任意不等的实数x1,x2,总有manfen5.com 满分网<0成立.
其中所有正确命题的序号是    查看答案
己知4x-3y-5=0,那么(x-1)2+(y-3)2的最小值为    查看答案
已知O是△ABC内任意一点,连接AO、BO、CO并延长交对边于A′、B′、C′,则manfen5.com 满分网,运用类比猜想,对于空间中四面体A-BCD有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.