满分5 > 高中数学试题 >

已知椭圆C:(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点 构成...

已知椭圆C:manfen5.com 满分网(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点
构成等边三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A1
(ⅰ)求证:直线A1B过x轴上一定点,并求出此定点坐标;
(ⅱ)求△OA1B面积的取值范围.
(Ⅰ)根据焦点坐标求得c,根据椭圆两个焦点与短轴的一个端点构成等边三角形.求得a和c的关系式,进而求得a和b,则椭圆的方程可得. (Ⅱ)(i)设出直线l的方程,与椭圆方程联立消去x,设出A,B的坐标,则可利用韦达定理求得y1y2和y1+y2的表达式,根据A点坐标求得关于x轴对称的点A1的坐标,设出定点,利用TB和TA1的斜率相等求得t. (ii)由(i)中判别式△>0求得m的范围,表示出三角形OA1BD面积,利用m的范围,求得m的最大值,继而求得三角形面积的范围. 【解析】 (Ⅰ)因为椭圆C的一个焦点是(1,0),所以半焦距c=1. 因为椭圆两个焦点与短轴的一个端点构成等边三角形. 所以,解得a=2,b=所以椭圆的标准方程为. (Ⅱ)(i)设直线l:x=my+4与联立并消去x得:(3m2+4)y2+24my+36=0. 记,. 由A关于x轴的对称点为A1,得A1(x1,-y1), 根据题设条件设定点为T(t,0),得,即. 所以=即定点T(1,0). (ii)由(i)中判别式△>0,解得|m|>2.可知直线A1B过定点T(1,0). 所以|OT||y2-(-y1)|=, 得, 令t=|m|记,得,当t>2时,φ′(t)>0. 在(2,+∞)上为增函数.所以, 得.故△OA1B的面积取值范围是.
复制答案
考点分析:
相关试题推荐
如图一,平面四边形ABCD关于直线AC对称,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如图二),使二面角A-BD-C的余弦值等于manfen5.com 满分网.对于图二,完成以下各小题:
(Ⅰ)求A,C两点间的距离;
(Ⅱ)证明:AC⊥平面BCD;
(Ⅲ)求直线AC与平面ABD所成角的正弦值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(1+cosωx,1),manfen5.com 满分网=(1,a+manfen5.com 满分网sinωx)(ω为常数且ω>0),函数f(x)=manfen5.com 满分网在R上的最大值为2.
(1)求实数a的值;
(2)把函数y=f(x)的图象向右平移manfen5.com 满分网个单位,可得函数y=g(x)的图象,若y=g(x)在[0,manfen5.com 满分网]上为增函数,求ω的最大值.
查看答案
集合A,B各有四个元素,A∩B有一个元素,C⊈A∪B,集合C含有三个元素,且其中至少有一个A的元素,符合上述条件的集合C的个数是    查看答案
已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命题
①若f1(x)=manfen5.com 满分网则f1(x)∈M;
②若f2(x)=2x,则f2(x)∈M;
③若f3(x)∈M,则y=f3(x)的图象关于原点对称;
④若f4(x)∈M则对于任意不等的实数x1,x2,总有manfen5.com 满分网<0成立.
其中所有正确命题的序号是    查看答案
己知4x-3y-5=0,那么(x-1)2+(y-3)2的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.