满分5 > 高中数学试题 >

已知函数的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5. (...

已知函数manfen5.com 满分网的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(Ⅰ)求实数b,c的值;  
(Ⅱ)求f(x)在区间[-1,2]上的最大值;
(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.
(Ⅰ)当x<1时,f(x)=-x3+x2+bx+c,则f'(x)=-3x2+2x+b.依题意得:,由此能求出实数b,c的值. (Ⅱ)由知,当-1≤x<1时,,令f'(x)=0得,当x变化时,f'(x),f(x)的变化情况列表知f(x)在[-1,1)上的最大值为2.当1≤x≤2时,f(x)=alnx.当a≤0时,f(x)≤0,f(x)最大值为0;当a>0时,f(x)在[1,2]上单调递增.当aln2≤2时,f(x)在区间[-1,2]上的最大值为2;当aln2>2时,f(x)在区间[-1,2]上的最大值为aln2. (Ⅲ)假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.设P(t,f(t))(t>0),则Q(-t,t3+t2),显然t≠1.由此入手能得到对任意给定的正实数a,曲线y=f(x)上存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上. 【解析】 (Ⅰ)当x<1时,f(x)=-x3+x2+bx+c,则f'(x)=-3x2+2x+b. 依题意得:,即解得b=c=0 (Ⅱ)由(Ⅰ)知, ①当-1≤x<1时,, 令f'(x)=0得 当x变化时,f'(x),f(x)的变化情况如下表: x (-1,0) f'(x) - + - f(x) 单调递减 极小值 单调递增 极大值 单调递减 又f(-1)=2,,f(0)=0.∴f(x)在[-1,1)上的最大值为2. ②当1≤x≤2时,f(x)=alnx.当a≤0时,f(x)≤0,f(x)最大值为0; 当a>0时,f(x)在[1,2]上单调递增.∴f(x)在[1,2]最大值为aln2. 综上,当aln2≤2时,即时,f(x)在区间[-1,2]上的最大值为2; 当aln2>2时,即时,f(x)在区间[-1,2]上的最大值为aln2. (Ⅲ)假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧. 不妨设P(t,f(t))(t>0),则Q(-t,t3+t2),显然t≠1 ∵△POQ是以O为直角顶点的直角三角形,∴ 即-t2+f(t)(t3+t2)=0(*) 若方程(*)有解,存在满足题设要求的两点P、Q; 若方程(*)无解,不存在满足题设要求的两点P、Q. 若0<t<1,则f(t)=-t3+t2代入(*)式得:-t2+(-t3+t2)(t3+t2)=0 即t4-t2+1=0,而此方程无解,因此t>1.此时f(t)=alnt, 代入(*)式得:-t2+(alnt)(t3+t2)=0即(**) 令h(x)=(x+1)lnx(x≥1),则 ∴h(x)在[1,+∞)上单调递增,∵t>1∴h(t)>h(1)=0,∴h(t)的取值范围是(0,+∞). ∴对于a>0,方程(**)总有解,即方程(*)总有解. 因此,对任意给定的正实数a,曲线y=f(x)上存在两点P、Q,使得△POQ是以O为直角顶点的直角 三角形,且此三角形斜边中点在y轴上.
复制答案
考点分析:
相关试题推荐
已知椭圆的中心在原点,焦点在y轴上,焦距为4,离心率为manfen5.com 满分网
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆在y轴的正半轴上的焦点为M,又点A和B在椭圆上,且M分有向线段manfen5.com 满分网所成的比为2,求线段AB所在直线的方程.
查看答案
在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:PD⊥平面ABE;
(3)求二面角B-PC-D的余弦值.

manfen5.com 满分网 查看答案
从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;
(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.

manfen5.com 满分网 查看答案
已知△ABC的面积S满足manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的夹角为θ.
(1)求θ的取值范围;
(2)求函数manfen5.com 满分网的最大值及最小值.
查看答案
如图所示,是一个由三根细铁杆PA,PB,PC组成的支架,三根铁杆的两两夹角都是60°,一个半径为1的球放在支架上,则球心到P的距离为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.