满分5 > 高中数学试题 >

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射...

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=manfen5.com 满分网+2a+manfen5.com 满分网,x∈R,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=manfen5.com 满分网,x∈R,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
(1)先取倒数,然后对得到的函数式的分子分母同除以x,再利用导数求出的取值范围,最后根据反比例函数的单调性求出t的范围即可; (2)f(x)=g(t)=|t-a|+2a+.下面分类讨论:当 0<a<,当 >a≥,分别求出函数g(x)的最大值M(a),然后解不等式M(a)≤2即可求出所求. 【解析】 (1)当x=0时,t=0;(2分) 当0<x≤24时,=x+.对于函数y=x+,∵y′=1-, ∴当0<x<1时,y′<0,函数y=x+单调递减, 当1<x≤24时,y′>0,函数y=x+单调递增, ∴y∈[2,+∞). 综上,t的取值范围是[0,]. (2)当a∈(0,]时,f(x)=g(t)=|t-a|+2a+= ∵g(0)=3a+,g()=a+, g(0)-g()=2a-. 故M(a)== 当且仅当a≤时,M(a)≤2, 故a∈(0,]时不超标,a∈(,]时超标.
复制答案
考点分析:
相关试题推荐
如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AC=EF=1,AB=AD=DE=DG=2.
(1)求证:平面BEF⊥平面DEFG;
(2)求证:BD∥平面ACGD;
(3)求三棱锥A-BCF的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网
(1) 求函数f(x)的最小正周期;
(2) 已知△ABC的三内角A、B、C的对边分别为a、b、c,且manfen5.com 满分网(C为锐角),2sinA=sinB,求C、a、b的值.
查看答案
已知动点P(x,y)满足|x-1|+|y-a|=1,O为坐标原点,若manfen5.com 满分网的最大值的取值范围为manfen5.com 满分网,则实数a的取值范围是    查看答案
已知抛物线y2=2px(p>0),过定点T(p,0)作两条互相垂直的直线l1,l2,若l1与抛物线交与P、Q,若l2与抛物线交与M、N,l1的斜率为k.某同学正确地已求出了弦PQ的中点为manfen5.com 满分网,请写出弦MN的中点    查看答案
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线manfen5.com 满分网的一部分,栏栅与矩形区域的边界交于点M,N,交曲线于点P,则△OMN(O为坐标原点)的面积的最小值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.