满分5 > 高中数学试题 >

函数f(x)=ax2+bx+c(a≠0)的图象关于直线对称.据此可推测,对任意的...

函数f(x)=ax2+bx+c(a≠0)的图象关于直线manfen5.com 满分网对称.据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是( )
A.{1,2}
B.{1,4}
C.{1,2,3,4}
D.{1,4,16,64}
根据函数f(x)的对称性,因为m[f(x)]2+nf(x)+p=0的解应满足y1=ax2+bx+c,y2=ax2+bx+c, 进而可得到方程m[f(x)]2+nf(x)+p=0的根,应关于对称轴x=对称,对于D中4个数无论如何组合都找不到满足条件的对称轴,故解集不可能是D. 【解析】 ∵f(x)=ax2+bx+c的对称轴为直线x= 令设方程m[f(x)]2+nf(x)+p=0的解为f1(x),f2(x) 则必有f1(x)=y1=ax2+bx+c,f2(x)=y2=ax2+bx+c 那么从图象上看,y=y1,y=y2是一条平行于x轴的直线 它们与f(x)有交点 由于对称性,则方程y1=ax2+bx+c的两个解x1,x2要关于直线x=对称 也就是说x1+x2= 同理方程y2=ax2+bx+c的两个解x3,x4也要关于直线x=对称 那就得到x3+x4=, 在C中,可以找到对称轴直线x=2.5, 也就是1,4为一个方程的解,2,3为一个方程的解 所以得到的解的集合可以是{1,2,3,4} 而在D中,{1,4,16,64} 找不到这样的组合使得对称轴一致, 也就是说无论怎么分组, 都没办法使得其中两个的和等于另外两个的和 故答案D不可能 故选D.
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程
在直角坐标系x0y中,直线l的参数方程为manfen5.com 满分网(t为参数),若以直角坐标系x0y的O点为极点,0x为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为manfen5.com 满分网
(1)求直线l的倾斜角;
(2)若直线l与曲线C交于A,B两点,求AB.
查看答案
选修4-2:矩阵与变换
已知矩阵manfen5.com 满分网,向量manfen5.com 满分网.求向量manfen5.com 满分网,使得manfen5.com 满分网
查看答案
把所有正整数按上小下大,左小右大的原则排成如图所示的数表,其中第i行共有2i-1个正整数,设aij(i,j∈N*)表示位于这个数表中从上往下数第i行,从左往右第j个数.
(1)求a69的值;
(2)用i,j表示aij
(3)记An=a11+a22+a33+…+ann(n∈N*),求证:当n≥4时,manfen5.com 满分网

manfen5.com 满分网 查看答案
manfen5.com 满分网在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若Q是轨迹C上异于点P的一个点,且manfen5.com 满分网,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程manfen5.com 满分网在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(3)证明:对任意的正整数n,不等式manfen5.com 满分网都成立.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.