满分5 > 高中数学试题 >

已知函数. (I)若p=2,求曲线f(x)在点(1,f(1))处的切线方程; (...

已知函数manfen5.com 满分网
(I)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数manfen5.com 满分网,若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求实数p的取值范围.
(I)求出函数在x=1处的值,求出导函数,求出导函数在x=1处的值即切线的斜率,利用点斜式求出切线的方程. (II)求出函数的导函数,令导函数大于等于0恒成立,构造函数,求出二次函数的对称轴,求出二次函数的最小值,令最小值大于等于0,求出p的范围. (III)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围. 【解析】 (I)当p=2时,函数,f(1)=2-2-2ln1=0., 曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2. 从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1) 即y=2x-2. (II). 令h(x)=px2-2x+p, 要使f(x)在定义域(0,+∞)内是增函数,只需h(x)≥0在(0,+∞)内恒成立. 由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为, ∴,只需, 即p≥1时,h(x)≥0,f'(x)≥0 ∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞). (III)∵在[1,e]上是减函数, ∴x=e时,g(x)min=2;x=1时,g(x)max=2e, 即g(x)∈[2,2e], 1当p<02时,h(x)=px2-2x+p3,其图象为开口向下的抛物线,对称轴4在y5轴的左侧,且h(0)<0, 所以f(x)在x∈[1,e]9内是减函数. 当p=0时,h(x)=-2x,因为x∈[1,e],所以h(x)<0, ,此时,f(x)在x∈[1,e]内是减函数. ∴当p≤0时,f(x)在[1,e]上单调递减⇒f(x)max=f(1)=0<2,不合题意; ( 当0<p<1时,由12,所以. 又由(2)知当p=1时,f(x)在[1,e]上是增函数, ∴,不合题意; 14当p≥115时,由(2)知f(x)16在[1,e]17上是增函数,f(1)=0<218,又g(x)19在[1,e]20上是减函数, 故只需f(x)max>g(x)min,x∈[1,e],而,g(x)min=2,即,解得 综上所述,实数p的取值范围是.
复制答案
考点分析:
相关试题推荐
已知半椭圆manfen5.com 满分网与半椭圆manfen5.com 满分网组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,
(1)若三角形FF1F2是边长为1的等边三角形,求“果圆”的方程;
(2)若|A1A|>|B1B|,求manfen5.com 满分网的取值范围;
(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第五组第一位学生的编号;
(2)填充频率分布表的空格(直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?
分组频数频率
60.5~70.50.16
70.5~80.510
80.5~90.5180.36
90.5~100.5
合计50

查看答案
manfen5.com 满分网=    查看答案
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且manfen5.com 满分网,则C的离心率为    查看答案
manfen5.com 满分网的展开式中的常数项为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.