满分5 > 高中数学试题 >

在等差数列{an}中,a2=2,a3=4,则a10=( ) A.12 B.14 ...

在等差数列{an}中,a2=2,a3=4,则a10=( )
A.12
B.14
C.16
D.18
根据所给的等差数列的两项做出等差数列的公差,写出等差数列的第十项的表示式,用第三项加上七倍的公差,代入数值,求出结果. 【解析】 ∵等差数列{an}中,a2=2,a3=4, ∴d=a3-a2=4-2=2, ∴a10=a3+7d=4+14=18 故选D.
复制答案
考点分析:
相关试题推荐
已知命题P:∃x∈R,ex≤0则¬P为( )
A.∀x∈R,ex≤o
B.∀x∈R,ex>0
C.∃x∈R,ex>o
D.∃x∈R,ex≥o
查看答案
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点.
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
查看答案
已知函数f(x)对任意x,y∈R,满足条件f(x)+f(y)=2+f(x+y),且f(3)=5,
(1)求f(1)+f(-1)的值;
(2)若f(x)为R上的增函数,证明:存在唯一的实数,使得对任意x∈(0,1),都有f(x2+2t2x)<3成立.
查看答案
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).
(Ⅰ)证明:当x≥0时,f(x)≤(x+c)2
(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案
已知函数manfen5.com 满分网
(I)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数manfen5.com 满分网,若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求实数p的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.