满分5 > 高中数学试题 >

设x,y∈R,向量=(x,1),=(1,y),=(2,-4)且⊥,∥,则|+|=...

设x,y∈R,向量manfen5.com 满分网=(x,1),manfen5.com 满分网=(1,y),manfen5.com 满分网=(2,-4)且manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则|manfen5.com 满分网+manfen5.com 满分网|=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.10
由两个向量垂直的性质可得2x-4=0,由两个向量共线的性质可得-4-2y=0,由此求出 x=2,y=-2,以及的坐标,从而求得||的值. 【解析】 ∵向量=(x,1),=(1,y),=(2,-4)且⊥,∥,则有2x-4=0,-4-2y=0, 解得 x=2,y=-2,故=(3,-1 ). 故有||==, 故选B.
复制答案
考点分析:
相关试题推荐
下列函数中,既是奇函数又是增函数的为( )
A.y=x+1
B.y=-x2
C.manfen5.com 满分网
D.y=x|x|
查看答案
命题“若α=manfen5.com 满分网,则tanα=1”的逆否命题是( )
A.若α≠manfen5.com 满分网,则tanα≠1
B.若α=manfen5.com 满分网,则tanα≠1
C.若tanα≠1,则α≠manfen5.com 满分网
D.若tanα≠1,则α=manfen5.com 满分网
查看答案
集合M={x|lgx>0},N={x|x2≤4},则M∩N=( )
A.(1,2)
B.[1,2)
C.(1,2]
D.[1,2]
查看答案
已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为manfen5.com 满分网的直线n,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的方程;
(Ⅱ)若P为抛物线C上的动点,求manfen5.com 满分网的最小值;
(Ⅲ)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

manfen5.com 满分网 查看答案
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.
(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明);
(2)证明:manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.