由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a25|<a1,|a26|<a2,…,|a49|<a24,从而可判断
【解析】
由于f(n)=sin的周期T=50
由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0
且sin,sin…但是f(n)=单调递减
a26…a50都为负数,但是|a25|<a1,|a26|<a2,…,|a49|<a24
∴S1,S2,…,S25中都为正,而s26,s27,…,s50都为正
同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,
故选D