满分5 > 高中数学试题 >

设函数. (Ⅰ)当时,求f(x)的最大值; (Ⅱ)令,(0<x≤3),其图象上任...

设函数manfen5.com 满分网
(Ⅰ)当manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令manfen5.com 满分网,(0<x≤3),其图象上任意一点P(x,y)处切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I)函数的定义域是(0,+∞),把代入函数解析式,求其导数,根据求解目标,这个导数在函数定义域内只有一个等于零的点,判断这唯一的极值点是极大值点即可; (II)即函数F(x)的导数在(0,3]小于或者等于恒成立,分离参数后转化为函数的最值; (III)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m. 【解析】 (I)依题意,知f(x)的定义域为(0,+∞),当时,,(2′) 令f'(x)=0,解得x=1.(∵x>0) 因为g(x)=0有唯一解,所以g(x2)=0,当0<x<1时,f'(x)>0,此时f(x)单调递增; 当x>1时,f'(x)<0,此时f(x)单调递减. 所以f(x)的极大值为,此即为最大值…(4分) (II),x∈(0,3],则有≤,在x∈(0,3]上恒成立, 所以a≥,x∈(0,3], 当x=1时,取得最大值, 所以a≥…(8分) (III)因为方程2mf(x)=x2有唯一实数解,所以x2-2mlnx-2mx=0有唯一实数解, 设g(x)=x2-2mlnx-2mx,则. 令g'(x)=0,x2-mx-m=0.因为m>0,x>0, 所以(舍去),, 当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减, 当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增 当x=x2时,g'(x2)=0,g(x)取最小值g(x2).(12′) 则既 所以2mlnx2+mx2-m=0,因为m>0,所以2lnx2+x2-1=0(*) 设函数h(x)=2lnx+x-1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解. 因为h(1)=0,所以方程(*)的解为x2=1,即,解得.…(12分)
复制答案
考点分析:
相关试题推荐
某园林公司计划在一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.
(参考公式:扇形面积公式manfen5.com 满分网,l表示扇形的弧长)

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(cosωx-sinωx,sinωx),manfen5.com 满分网=(-cosωx-sinωx,2manfen5.com 满分网cosωx),设函数f(x)=manfen5.com 满分网manfen5.com 满分网+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(manfen5.com 满分网,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(manfen5.com 满分网,0)求函数f(x)在区间[0,manfen5.com 满分网]上的取值范围.
查看答案
△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=2a.
(1)求manfen5.com 满分网
(2)求A的取值范围.
查看答案
已知函数f(x)是定义在R上且以3为周期的奇函数,当manfen5.com 满分网时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数是    查看答案
(理)在直角坐标系中,圆C的参数方程是manfen5.com 满分网(θ为参数),以原点为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.