(1)连AC,A1C1,可先根据线面垂直的判定定理可证BD⊥平面ACC1A1,A1E⊂平面ACC1A1,根据线面垂直的性质可知BD⊥A1E;
(2)设AC∩BD=O,则O为BD的中点,连A1O,EO,根据二面角平面角的定义可知∠A1OE即为二面角A1-BD-E的平面角,根据勾股定理可求出
∠A1EO=90°,根据面面垂直的定义可知平面A1BD⊥平面BDE.
证明:(1)连AC,A1C1
∵正方体AC1中,AA1⊥平面ABCD∴AA1⊥BD
∵正方形ABCD,AC⊥BD且AC∩AA1=A
∴BD⊥平面ACC1A1且E∈CC1∴A1E⊂平面ACC1A1∴BD⊥A1E
(2)设AC∩BD=O,则O为BD的中点,连A1O,EO
由(1)得BD⊥平面A1ACC1∴BD⊥A1O,BD⊥EO
∴∠A1OE即为二面角A1-BD-E的平面角
∵AB=a,E为CC1中点∴A1O=,EO=,A1E=
∴A1O2+OE2=A1E2∴A1O⊥OE∴∠A1OE=90°
∴平面A1BD⊥平面BDE