满分5 > 高中数学试题 >

如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面A...

如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE;
(2)求证:AE⊥BE.

manfen5.com 满分网
(1)先取DE的中点P,利用N,P为中点,可以推出PN∥DC,且PN=DC,再利用四边形ABCD是矩形,点M为线段AB的中点,可以推出 AM∥DC,且AM=DC,故有PN∥AM,且PN=AM,⇒四边形AMNP是平行四边形,⇒MN∥AP即可证:MN∥平面DAE; (2)先利用BC⊥平面ABE⇒AE⊥BC,再利用BF⊥平面ACE⇒AE⊥BF,可以证得AE⊥平面BCE,进而可证AE⊥BE. 证明:(1)取DE的中点P,连接PA,PN, 因为点N为线段CE的中点, 所以PN∥DC,且PN=DC, 又四边形ABCD是矩形,点M为线段AB的中点, 所以AM∥DC,且AM=DC, 所以PN∥AM,且PN=AM, 故四边形AMNP是平行四边形, 所以MN∥AP. 而AP⊂平面DAE,MN⊄平面DAE, 所以MN∥平面DAE. (2)因为BC⊥平面ABE,AE⊂平面ABE, 所以AE⊥BC, 又BF⊥平面ACE,AE⊂平面ACE, 所以AE⊥BF, 又BF∩BC=B, 所以AE⊥平面BCE. 又BE⊂平面BCE, 所以AE⊥BE.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PD⊥底面ABCD,PD=DC,点E是PC的中点,点F在PB上,EF⊥PB.
(I)求证:PA∥平面BDE;
(II)求证:PB⊥平面DEF.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,棱长为a,E为棱CC1上的动点.
(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD.
查看答案
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD.

manfen5.com 满分网 查看答案
已知正方体ABCD-A'B'C'D',则该正方体的体积、四棱锥C'-ABCD的体积以及该正方体的外接球的体积之比为    查看答案
直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.