满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等...

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,manfen5.com 满分网
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求四棱锥P-ABCD的体积.

manfen5.com 满分网
(I)欲证平面MBD⊥平面PAD,根据面面垂直的判定定理可知在平面MBD内一直线与平面PAD垂直,而根据平面PAD与平面ABCD垂直的性质定理可知BD⊥平面PAD; (II)过P作PO⊥AD交AD于O,根据平面PAD与平面ABCD垂直的性质定理可知PO⊥平面ABCD,从而PO为四棱锥P-ABCD的高,四边形ABCD是梯形,根据梯形的面积公式求出底面积,最后用锥体的体积公式进行求解即可. 【解析】 (Ⅰ)证明:在△ABD中, 由于AD=4,BD=8,, 所以AD2+BD2=AB2.故AD⊥BD. 又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD, 所以BD⊥平面PAD, 又BD⊂平面MBD, 故平面MBD⊥平面PAD. (Ⅱ)【解析】 过P作PO⊥AD交AD于O, 由于平面PAD⊥平面ABCD, 所以PO⊥平面ABCD.因此PO为四棱锥P-ABCD的高, 又△PAD是边长为4的等边三角形.因此. 在底面四边形ABCD中,AB∥DC,AB=2DC, 所以四边形ABCD是梯形,在Rt△ADB中,斜边AB边上的高为, 此即为梯形ABCD的高,所以四边形ABCD的面积为. 故.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(I)求函数f(x)的对称中心和单调区间;
(II)已知△ABC内角A、B、C的对边分别为a,b,3,且f(C)=1,若向量manfen5.com 满分网共线,求a、b的值.
查看答案
在数列{an}中,已知manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn
查看答案
函数f(x)=2sin(ωx+φ)的图象,其部分图象如图所示,则f(0)=   
manfen5.com 满分网 查看答案
若实数x,y满足manfen5.com 满分网,如果目标函数z=x-y的最小值为-2,则实数m=    查看答案
在等比数列{an}中,an>0,且a1•a2•…•a7•a8=16,则a4+a5的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.