(Ⅰ)利用线面垂直,证明面面垂直,先证明A1A⊥面ABC,再证明面A1AC⊥面ABC;
(Ⅱ)取BC的中点E,证明四边形CEB1C1为平行四边形,可得B1E∥C1C,从而可得B1E∥面A1C1C,再证明AE∥面A1C1C,利用面面平行的判定,可得面B1AE∥面A1C1C,从而可得AB1∥面A1C1C.
证明:(Ⅰ)∵四边形ABB1A1为正方形,∴A1A=AB=AC=1,A1A⊥AB
∴…(2分)
∵A1C=A1B,∴,∴
∴A1A⊥AC…(4分)
∵AB∩AC=A,∴A1A⊥面ABC
又∵A1A⊂面A1AC,∴面A1AC⊥面ABC…(6分)
(Ⅱ)取BC的中点E,连接AE,C1E,B1E
∵B1C1∥BC,B1C1=,∴B1C1∥EC,B1C1=EC
∴四边形CEB1C1为平行四边形,∴B1E∥C1C
∵C1C⊂面A1C1C,B1E⊄面A1C1C,∴B1E∥面A1C1C…(8分)
∵B1C1∥BC,B1C1=,∴B1C1∥BE,B1C1=BE
∴四边形BB1C1E为平行四边形,∴B1B∥C1E,且B1B=C1E
又∵ABB1A1是正方形,∴A1A∥C1E,且A1A=C1E
∴AEC1A1为平行四边形,∴AE∥A1C1,
∵A1C1⊂面A1C1C,AE⊄面A1C1C,∴AE∥面A1C1C…(10分)
∵AE∩B1E=E,∴面B1AE∥面A1C1C
∵AB1⊂面B1AE,∴AB1∥面A1C1C…(12分)