满分5 > 高中数学试题 >

设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极...

设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.
(Ⅰ)求a和b的值;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)设manfen5.com 满分网,试比较f(x)与g(x)的大小.
(Ⅰ)根据已知x=-2和x=1为f(x)的极值点,易得f'(-2)=f'(1)=0,从而解出a,b的值. (Ⅱ)利用导数求解函数单调的方法步骤,进行求解. (Ⅲ)比较大小,做差f(x)-g(x)=x2(ex-1-x),构造新函数h(x)=ex-1-x,在定义域内,求解h(x)与0的关系. 【解析】 (Ⅰ)因为f'(x)=ex-1(2x+x2)+3ax2+2bx=xex-1(x+2)+x(3ax+2b), 又x=-2和x=1为f(x)的极值点,所以f'(-2)=f'(1)=0, 因此解方程组得,b=-1. (Ⅱ)因为,b=-1,所以f'(x)=x(x+2)(ex-1-1), 令f'(x)=0,解得x1=-2,x2=0,x3=1. 因为当x∈(-∞,-2)∪(0,1)时,f'(x)<0; 当x∈(-2,0)∪(1,+∞)时,f'(x)>0. 所以f(x)在(-2,0)和(1,+∞)上是单调递增的;在(-∞,-2)和(0,1)上是单调递减的. (Ⅲ)由(Ⅰ)可知, 故f(x)-g(x)=x2ex-1-x3=x2(ex-1-x),令h(x)=ex-1-x,则h'(x)=ex-1-1. 令h'(x)=0,得x=1,因为x∈(-∞,1]时,h'(x)≤0, 所以h(x)在x∈(-∞,1]上单调递减.故x∈(-∞,1]时,h(x)≥h(1)=0; 因为x∈[1,+∞)时,h'(x)≥0,所以h(x)在x∈[1,+∞)上单调递增. 故x∈[1,+∞)时,h(x)≥h(1)=0. 所以对任意x∈(-∞,+∞),恒有h(x)≥0,又x2≥0,因此f(x)-g(x)≥0, 故对任意x∈(-∞,+∞),恒有f(x)≥g(x).
复制答案
考点分析:
相关试题推荐
设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且manfen5.com 满分网,求{bn}的通项公式;
(3)若m=1时,设Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整数k,使得对任意n∈N*均有manfen5.com 满分网成立,若存在求出k的值,若不存在请说明理由.
查看答案
如图,直三棱柱ABC-A1B1C1中,AB=manfen5.com 满分网,BC=2,∠BAC=45°,D是AC1的中点,E是侧棱BB1上的一个动点.
(1)当E是BB1的中点时,证明:DE∥平面A1B1C1
(2)在棱BB1上是否存在点E满足manfen5.com 满分网manfen5.com 满分网,使二面角E-AC1-C是直二面角?若存在,求出λ的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网;已知乙项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是P(0<P<1),设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为ζ,对乙项目每投资十万元,ξ取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量ξ1、ξ2分别表示对甲、乙两项目各投资十万元一年后的利润.
(I)求ξ1、ξ2的概率分布和数学期望Eξ1、Eξ2
(II)当Eξ1<Eξ2时,求P的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间;
(3)函数f(x)的图象经过怎样的平移才能使其对应的函数成为奇函数?
查看答案
定义在R上的函数y=f(x),若对任意不等实数x1,x2满足manfen5.com 满分网,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,manfen5.com 满分网的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.