满分5 > 高中数学试题 >

设a≥0,f (x)=x-1-ln2x+2a ln x(x>0). (Ⅰ)令F(...

设a≥0,f (x)=x-1-ln2x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.
(1)先根据求导法求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间及极值即可. (2)欲证x>ln2x-2a ln x+1,即证x-1-ln2x+2alnx>0,也就是要证f(x)>f(1),根据第一问的单调性即可证得. 【解析】 (Ⅰ)根据求导法则有, 故F(x)=xf'(x)=x-2lnx+2a,x>0, 于是, ∴知F(x)在(0,2)内是减函数,在(2,+∞)内是增函数, 所以,在x=2处取得极小值F(2)=2-2ln2+2a. (Ⅱ)证明:由a≥0知,F(x)的极小值F(2)=2-2ln2+2a>0. 于是知,对一切x∈(0,+∞),恒有F(x)=xf'(x)>0. 从而当x>0时,恒有f'(x)>0,故f(x)在(0,+∞)内单调增加. 所以当x>1时,f(x)>f(1)=0,即x-1-ln2x+2alnx>0. 故当x>1时,恒有x>ln2x-2alnx+1.
复制答案
考点分析:
相关试题推荐
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且manfen5.com 满分网=manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知manfen5.com 满分网manfen5.com 满分网,求λ12的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD中点.
(I)试证:CD⊥平面BEF;
(II)高PA=k•AB,且二面角E-BD-C的平面角大小30°,求k的取值范围.
查看答案
袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等.用ξ表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量ξ的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.
查看答案
已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
若a≥0,b≥0,且当manfen5.com 满分网时,恒有ax+by≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.