满分5 > 高中数学试题 >

已知△ABC,∠C=60°,AC=2,BC=1,点M是△ABC内部或边界上一动点...

已知△ABC,∠C=60°,AC=2,BC=1,点M是△ABC内部或边界上一动点,N是边BC的中点,则manfen5.com 满分网的最大值为   
由题意,得△ABC是以B为直角的直角三角形,因此建立如图直角坐标系,设M(x,y),可得向量和的坐标,从而得到关于x、y的表达式,结合点M在△ABC内部或边界上运动,可得当点M与原点重合时的最大值为. 【解析】 ∵∠C=60°,AC=2,BC=1, ∴AB2=AC2+BC2-2AC•BCcos60°=3,得AB= 可得△ABC是以B为直角的直角三角形 因此,以C为原点,CB所在直线为x轴建立如图坐标系, 可得C(0,0),B(1,0),A(1,) ∴BC中点N(,0),得=(-,-) 设M(x,y),得=(x-1,y-) ∴=-(x-1)+(-)(y-)=-x-y+ 点M在△ABC内部或边界上运动,当点M与原点重合时,-x-y+=,取得最大值 即的最大值为 故答案为:
复制答案
考点分析:
相关试题推荐
5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为    查看答案
棱长为2的立方体的八个顶点都在球O的表面上,则球O的表面积是    查看答案
点P(1,3)关于直线y=x的对称点是    查看答案
manfen5.com 满分网已知点P的双曲线manfen5.com 满分网(a>0,b>0)右支上一点,F1、F2分别为双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设manfen5.com 满分网manfen5.com 满分网,则( )
A.a<b<c
B.b<a<c
C.c<b<a
D.c<a<b
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.