满分5 > 高中数学试题 >

如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=...

如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求三棱锥C-BEP的体积.

manfen5.com 满分网
(Ⅰ)欲证AF∥平面PCE,根据直线与平面平行的判定定理可知只需证AF与平面PCE内一直线平行,取PC的中点G,连接FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,满足定理条件; (Ⅱ)三棱锥C-BEP的体积可转化成三棱锥P-BCE的体积,而PA⊥底面ABCD,从而PA即为三棱锥P-BCE的高,根据三棱锥的体积公式进行求解即可. 【解析】 证明:(Ⅰ)取PC的中点G, 连接FG、EG ∴FG为△CDP的中位线 ∴FG CD ∵四边形ABCD为矩形, E为AB的中点 ∴AE CD ∴FG AE ∴四边形AEGF是平行四边形(2分) ∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE ∴AF∥平面PCE(4分) (Ⅱ)∵三棱锥C-BEP即为三棱锥P-BCE ∵PA⊥底面ABCD,即PA是三棱锥P-BCE的高 在Rt△BCE中,BE=1,BC=2,(10分) ∴三棱锥C-BEP的体积 VC-BEP=VP-BCE==(12分)
复制答案
考点分析:
相关试题推荐
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值.

manfen5.com 满分网 查看答案
如图,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求证:BD⊥平面ACC1A1
(Ⅱ)]若二面角C1-BD-C的大小为60o,求异面直线BC1与AC所成角的大小.

manfen5.com 满分网 查看答案
已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:
①两条平行直线;
②两条互相垂直的直线;
③同一条直线;
④一条直线及其外一点.
在上面结论中,正确结论的编号是    (写出所有正确结论的编号) 查看答案
如果一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是    查看答案
如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.