满分5 > 高中数学试题 >

已知函数f(x)=ax-1-lnx(a∈R). (1)讨论函数f(x)在定义域内...

已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(3)当x>y>e-1时,求证:manfen5.com 满分网
(Ⅰ),由此进行分类讨论,能求出函数f(x)在定义域内的极值点的个数. (Ⅱ)由函数f(x)在x=1处取得极值,知a=1,故,由此能求出实数b的取值范围. (Ⅲ)由,令,则只要证明g(x)在(e-1,+∞)上单调递增,由此能够证明. 【解析】 (Ⅰ), 当a≤0时,f'(x)<0在(0,+∞)上恒成立, 函数f(x)在(0,+∞)单调递减, ∴f(x)在(0,+∞)上没有极值点; 当a>0时,f'(x)<0得,f'(x)>0得, ∴f(x)在上递减,在上递增, 即f(x)在处有极小值. ∴当a≤0时f(x)在(0,+∞)上没有极值点, 当a>0时,f(x)在(0,+∞)上有一个极值点.(4分) (注:分类讨论少一个扣一分.) (Ⅱ)∵函数f(x)在x=1处取得极值,∴a=1,…(5分) ∴,…(6分) 令,可得g(x)在(0,e2]上递减,在[e2,+∞)上递增,…(8分) ∴,即.(9分) (Ⅲ)证明:,(10分) 令, 则只要证明g(x)在(e-1,+∞)上单调递增, 又∵, 显然函数在(e-1,+∞)上单调递增.(12分) ∴,即g'(x)>0, ∴g(x)在(e-1,+∞)上单调递增, 即, ∴当x>y>e-1时,有.(14分)
复制答案
考点分析:
相关试题推荐
设关于x的方程x2-mx-1=0 有两个实根α、β,且α<β.定义函数manfen5.com 满分网
(1)求αf(α)+βf(β) 的值;
(2)判断f(x) 在区间(α,β) 上的单调性,并加以证明;
(3)若λ,μ 为正实数,求证:manfen5.com 满分网
查看答案
已知数列{an}是首项a1=manfen5.com 满分网,公比为manfen5.com 满分网的等比数列,sn为数列{an}的前n项和,又bn+5logmanfen5.com 满分网=t,常数t∈N*,数列{Cn}满足manfen5.com 满分网×bn
(Ⅰ)若{cn}是递减数列,求t的最小值;
(Ⅱ)是否存在正整数k,使ck,ck+1,ck+2这三项按某种顺序排列后成等比数列?若存在,试求出k,t的值;若不存在,请说明理由.
查看答案
如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10manfen5.com 满分网米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.

manfen5.com 满分网 查看答案
已知正数数列{an}的前n项和为Sn,满足Sn2=a13+a23+…+an3
(I)求证:数列{an}为等差数列,并求出通项公式;
(II)设bn=(1-manfen5.com 满分网2-a(1-manfen5.com 满分网),若bn+1>bn对任意n∈N*恒成立,求实数a的取值范围.
查看答案
在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|manfen5.com 满分网-manfen5.com 满分网|=1,求△ABC周长l的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.