法一:
(Ⅰ)设O是AC的中点,连接OB、OC1.在正三棱柱中,OB⊥AC,OB⊥平面ACC1A1,OC1是BC1在面ACC1A1上的射影.△AEC≌△COC1,由此能够证明BC1⊥EC.
(Ⅱ)由(Ⅰ)知BO⊥平面AEC,作OF⊥EC,垂足为F,连接BF,则∠OFB为二面角A-EC-B的平面角.由此能求出二面角A-EC-B的大小.
法二:
(Ⅰ)在正三棱柱中,以AC的中点O为原点,建立空间直角坐标系,设AB=2,利用向量法能够证明BC1⊥EC.
(Ⅱ)求出平面AEC的一个法向量为.求出平面ECD的法向量.利用向量法能坟出二面角A-EC-B的大小.
解法一:
(Ⅰ)证明:设O是AC的中点,连接OB、OC1.
在正三棱柱中,OB⊥AC,OB⊥平面ACC1A1,
∴OC1是BC1在面ACC1A1上的射影.
∴△AEC≌△COC1,∠AEC=∠COC1.
又∠AEC+∠ACE=90°,
∴∠COC1+∠ACE=90°,OC1⊥EC,
∴BC1⊥EC.…(6分)
(Ⅱ)【解析】
由(Ⅰ)知BO⊥平面AEC,
作OF⊥EC,垂足为F,连接BF,
则∠OFB为二面角A-EC-B的平面角.
不妨设AB=2,则,,
在Rt△BOF中,,
∴.…(12分)
解法二:
(Ⅰ)证明:在正三棱柱中,以AC的中点O为原点,建立空间直角坐标系O-xyz如图.
设AB=2,则
,,,,
∴,,
∵.
∴BC1⊥EC.…(6分)
(Ⅱ)【解析】
在空间直角坐标系O-xyz中,
平面AEC的一个法向量为.
设平面ECD的法向量为,
易知,.
由,得,
取x=1,得.
,
∴二面角A-EC-B的大小为.…(12分)