满分5 > 高中数学试题 >

已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),定点,F1,F2是...

已知在直角坐标系xOy中,圆锥曲线C的参数方程为manfen5.com 满分网(θ为参数),定点manfen5.com 满分网,F1,F2是圆锥曲线C的左,右焦点.
(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求经过点F1且平行于直线AF2的直线l的极坐标方程;
(2)在(I)的条件下,设直线l与圆锥曲线C交于E,F两点,求弦EF的长.
(1)将曲线的参数方程化为普通方程,由椭圆的标准方程确定相关点的坐标,再由点斜式写出直线l的直角坐标方程,最后转化为极坐标方程即可 (2)将直线方程与椭圆标准方程联立,利用韦达定理和弦长公式计算相交弦EF的长即可 【解析】 (1)圆锥曲线C的参数方程为(θ为参数), 所以普通方程为C:∴ ∴ ∴直线l极坐标方程为: 即 (2)将直线代入椭圆标准方程,得5x2+8x=0, 设E(x1,y1),F(x2,y2),则x1+x2=,x1x2=0 ∴
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网选修4-1:几何证明选讲
如图,AD是⊙O的直径,AB是⊙O的切线,直线MN交AD的延长线于点C,BM=MN=NC=1,求AB的长和⊙O的半径.
查看答案
A﹑B﹑C是直线l上的三点,向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网满足:manfen5.com 满分网-[y+2f'(1)]•manfen5.com 满分网+ln(x+1)•manfen5.com 满分网=manfen5.com 满分网
(Ⅰ)求函数y=f(x)的表达式;          
(Ⅱ)若x>0,证明f(x)>manfen5.com 满分网
(Ⅲ)当manfen5.com 满分网时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.
查看答案
已知抛物线C1:y2=4x的焦点与椭圆C2manfen5.com 满分网的右焦点F2重合,F1是椭圆的左焦点.
(1)在△ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求△ABC重心G的轨迹方程;
(2)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=α,∠PF2F1=β,求cosα•cosβ的值及△PF1F2的面积.
查看答案
因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施.若实施方案一,预计第一年可以使出口额恢复到危机前的1.0倍、0.9倍、0.8倍的概率分别为0.3、0.3、0.4;第二年可以使出口额为第一年的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使出口额恢复到危机前的1.2倍、l.0倍、0.8倍的概率分别为0.2、0.3、0.5;第二年可以使出口额为第一年的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立.令ξ1(=1,2)表示方案实施两年后出口额达到危机前的倍数.
(Ⅰ)写出ξ1、ξ2的分布列;
(Ⅱ)实施哪种方案,两年后出口额超过危机前出口额的概率更大?
(Ⅲ)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为10万元、15万元、20万元,问实施哪种方案的平均利润更大.
查看答案
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为manfen5.com 满分网
(1)在线段DC上是否存在一点F,使得EF⊥面DBC,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角D-EC-B的平面角的余弦值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.