如图所示,已知⊙O
1与⊙O
2相交于A、B两点,过点A作⊙O
1的切线交⊙O
2于点C,过点B作两圆的割线,分别交⊙O
1、⊙O
2于点D、E,DE与AC相交于点P.
(I)求证:AD∥EC;
(II)若AD是⊙O
2的切线,且PA=6,PC=2,BD=9,求AD的长.
考点分析:
相关试题推荐
已知函数
在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,
恒成立,求实数m的取值范围.
查看答案
已知椭圆E的焦点在x轴上,离心率为
,对称轴为坐标轴,且经过点
.
(I)求椭圆E的方程;
(II)直线y=kx-2与椭圆E相交于A、B两点,O为原点,在OA、OB上分别存在异于O点的点M、N,使得O在以MN为直径的圆外,求直线斜率k的取值范围.
查看答案
如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.
(I)当E是AB的中点时,求证:AF∥平面PEC;
(II)要使二面角P-EC-D的大小为45°,试确定E点的位置.
查看答案
为了参加2012年贵州省高中篮球比赛,某中学决定从四个篮球较强的班级中选出12人组成男子篮球队代表所在地区参赛,队员来源人数如下表:
班级 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人数 | 4 | 2 | 3 | 3 |
(I)从这12名队员中随机选出两名,求两人来自同一班级的概率;
(II)该中学篮球队经过奋力拼搏获得冠军.若要求选出两位队员代表冠军队发言,设其中来自高三(7)班的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.
查看答案
已知
,
,且
.
(I)将y表示成x的函数f(x),并求f(x)的最小正周期;
(II)记f(x)的最大值为M,a、b、c分别为△ABC的三个内角A、B、C对应的边长,若
,且a=2,求bc的最大值.
查看答案